Abstract

Clinically, high levels of acrolein (a highly reactive α, β-unsaturated aldehyde) and acrolein adducts are detected in the brain of patients with CNS neurodegenerative diseases, including Alzheimer's disease and spinal cord injury. Our previous study supports this notion by showing acrolein as a neurotoxin in a Parkinsonian animal model. In the present study, the effect of AZD6244 (an ATP non-competitive MEK1/2 inhibitor) on acrolein-induced neuroinflammation was investigated using BV-2 cells and primary cultured microglia. Our immunostaining study showed that lipopolysaccharide (LPS, an inflammation inducer as a positive control) increased co-localized immunoreactivities of phosphorylated ERK and ED-1 (a biomarker of activated microglia) in the treated BV-2 cells. Similar elevation in co-localized immunoreactivities of phosphorylated ERK and ED-1 was detected in the acrolein-treated BV-2 cells. Furthermore, Western blot assay showed increases in phosphorylated ERK in BV-2 cells subjected to LPS (1μg/mL) or acrolein (30μM); these increases were blocked by AZD6244 (10μM). At the same time, AZD6244 attenuated LPS-induced TNF-α (a pro-inflammatory cytokine) and cyclooxygenase-II (COX II, a pro-inflammatory enzyme). Consistently, AZD6244 reduced acrolein-induced elevations in COX-II mRNA and COX-II protein expression. In addition, AZD6244 inhibited acrolein-induced increases in activated caspase 1 (a biomarker of inflammasome activation) and heme oxygenase-1 (a redox-regulated chaperone protein) in BV-2 cells. Using a transwell migration assay, AZD6244 attenuated acrolein (5μM)-induced migration of BV-2 cells and primary cultured microglia. In conclusion, our study shows that acrolein is capable of inducing neuroinflammation which involved ERK activation in microglia. Furthermore, AZD6244 is capable of inhibiting acrolein-induced neuroinflammation. Our study suggests that ERK inhibition may be a neuroprotective target against acrolein-induced neuroinflammation in the CNS neurodegenerative diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.