Abstract

Introduction: In the current study, the effects of photobiomodulation (PBM) treatments were examined based on biomechanical and histological criteria and mRNA levels of catalase (CAT), superoxide dismutase (SOD), and NADPH oxidase (NOX) 1 and 4 in a postponed, ischemic, and infected wound repair model (DIIWHM) in rats with type 2 diabetes (DM2) during the inflammation (day 4) and proliferation (day 8) stages. Methods: To study ischemic wound repair in a diabetic rat model (DIIWHM), 24 rats with type-2 diabetes were randomly divided into four groups and infected with methicillin-resistant Staphylococcus aureus (MRSA). The control groups consisted of CG4 (control group on day 4) and CG8 (control group on day 8), while the PBM groups comprised PBM4 (PBM treatment group on day 4) and PBM8 (PBM treatment group on day 8). These group assignments allowed for comparisons between the control groups and the PBM-treated groups at their respective time points during the study. Results: On days 4 and 8 of wound restoration, the PBM4 and PBM8 groups showed substantially modulated inflammatory responses and improved formation of fibroblast tissue compared with the CG groups (P<0.05). Concurrently, the effects of PBM8 were significantly superior to those of PBM4 (P<0.05). The antioxidant results on days 4 and 8 revealed substantial increases in CAT and SOD in the PBM groups compared with the CGs (P<0.05). Substantial decreases were observed in the antioxidant agents NOX1 and NOX4 of the PBM4 and PBM8 groups compared with both CGgroups (P<0.05). Conclusion: PBM treatments significantly sped up the inflammatory and proliferating processes in a DHIIWM in DM2 animals by modifying the inflammatory reaction and boosting fibroblast proliferation. Overall, the current findings indicated substantially better results in the PBM groups than in the CG groups.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call