Abstract

Previous studies have suggested that α-pinene, a common volatile plant metabolite, may have anti-inflammatory effects in human chondrocytes, thus exhibiting potential antiosteoarthritic activity. The objective of this study was to further characterize the potential antiosteoarthritic activity of selected pinene derivatives by evaluating their ability to modulate inflammation and extracellular matrix remodeling in human chondrocytes and to correlate the biological and chemical properties by determining whether the effects are isomer- and/or enantiomer-selective. To further elucidate chemicopharmacological interactions, the activities of other naturally occurring monoterpenes with the pinane nucleus were also investigated. At noncytotoxic concentrations, (+)-α-pinene (1) elicited the most potent inhibition of the IL-1β-induced inflammatory and catabolic pathways, namely, NF-κB and JNK activation and the expression of the inflammatory (iNOS) and catabolic (MMP-1 and -13) genes. (-)-α-Pinene (2) was less active than the (+)-enantiomer (1), and β-pinene (3) was inactive. E-Pinane (4) and oxygenated pinane-derived compounds, pinocarveol (5), myrtenal (6), (E)-myrtanol (7), myrtenol (8), and (Z)-verbenol (9), were less effective or even completely inactive and more cytotoxic than the pinenes tested (1-3). The data obtained show isomer- and enantiomer-selective anti-inflammatory and anticatabolic effects of α-pinene in human chondrocytes, (+)-α-pinene (1) being the most promising for further studies to determine its potential value as an antiosteoarthritic drug.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.