Abstract

Spinal cord injury (SCI) is a severely debilitating problem leading to substantial decrease in the quality of life. After spinal cord injury, inflammation and oxidative stress plays a key role in initiating the secondary injury cascades leading to progressive tissue degradation and extreme functional deficits. Given that the primary mechanical injuries to spinal cord are rarely repaired, the pharmacological interventions may improve the neurological outcomes caused by secondary injury. Astaxanthin (AST) is considered as a xanthophyll carotenoid with potent antioxidant and anti-inflammatory properties, which has various pharmacological activities. In the present study, we aimed to firstly assess the protective effect of AST, and then to define the AST mechanism of action on a rat model of SCI. Based on the results of von Frey test, AST treatment significantly alleviated the SCI-induced neuropathic pain compared with the control groups (P < 0.05). The expression analysis by western blot shows reduced expression levels of COX-2, TNF-α, IL-1β, and IL-6 following AST treatment (P < 0.05). The activity of antioxidant enzymes was evaluated using ELISA. Therefore, ELISA experiments showed a significant reduction in the level of oxidative stress in SCI rat following AST treatment (P < 0.05). Furthermore, histopathological evaluations revealed that myelinated white matter and motor neuron number were significantly preserved after treatment with AST (P < 0.05). In conclusion, our study shows that AST could improve SCI through anti-inflammatory and antioxidant effects which leads to decreased tissue damage and mechanical pain after SCI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call