Abstract

The management of acute inflammation, which arises from complex biological responses to harmful stimuli, is an important determinant in the recovery from an otherwise detrimental outcome such as septicemia. However, the side effects and limitations of current therapeutics necessitate the development of newer and safer alternatives. Mollugo cerviana is a common medicinal herb of the Indian subcontinent and has been traditionally used for its fever mitigating anti-microbial and hepatoprotective action. We have already reported the rich presence of radical scavenging phytochemicals in the plant extracts and their strong antioxidant properties. In the present study, we have evaluated the anti-inflammatory effects of methanolic extract (ME) of the areal parts of M. cerviana in a lipopolysaccharide (LPS)-induced acute inflammatory cell culture model. RAW 264.7 mouse macrophage cells were stimulated by the bacterial endotoxin LPS at a concentration of 1 μg/mL. Cytotoxicity and anti-inflammatory potential of ME were carried out. The concentration of M. cerviana extract up to 150 μg/ml was found to be non-toxic to cells (MTT and NRU assay). LPS induces acute inflammation by binding to TLR-4 receptors, initiating a downstream signalling cascade that results in pro-inflammatory cytokine secretion. Extract treatment at 100 μg/ml suppressed LPS-induced gene expression (qPCR) and secretion (ELISA) of pro-inflammatory cytokines IL-1β, IL-6 and TNF-α, and the chemokine CCL2, leading to dampening of the acute inflammatory cascade. LPS-induced elevation of ROS level (DCFDA method) was significantly reduced by extract treatment. Nitric oxide production, as indicated by nitrite level, was significantly reduced post extract treatment. This study demonstrated that M. cerviana methanolic extract has a potent antiinflammatory effect in the in vitro acute inflammation model of LPS-stimulated RAW 264.7 cells. There is no reported study so far on the anti-inflammatory properties of M. cerviana in an LPSinduced acute inflammatory model, which closely mimics a human bacteremia response. Hence, this study highlights the therapeutic potential of this extract as a source of anti-inflammatory lead molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call