Abstract

Neuroinflammation activated by microglia affects inflammatory pain development. This study aimed to explore the anti-inflammatory properties and mechanisms of 1,6,7-trihydroxy-2-(1,1-dimethyl-2-propenyl)-3-methoxyxanthone (THMX) from Cudrania tricuspidata in microglia activation-mediated inflammatory pain. In RAW 264.7 and BV2 cells, THMX has been shown to reduce lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and pro-inflammatory mediators and cytokines, including nitric oxide (NO), prostaglandin (PG) E2, interleukin (IL)-6, and tumor necrosis factor alpha (TNF-α). THMX also decreased LPS-induced phosphorylation of mitogen-activated protein kinase (MAPK) and the activation of p65 nuclear factor kappa B (NF-κB). Interestingly, THMX also activated heme oxygenase (HO)-1 expression. These findings suggest that THMX is a promising biologically active compound against inflammation through preventing MAPKs and NF-ĸB and activating HO-1 signaling pathways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call