Abstract
Implants decorated with antimicrobial peptides (AMPs) can prevent infection and reduce the risk of creating antibiotic resistance. Yet the restricted mobility of surficial AMP often compromises its activity. Here, we report a simple but effective strategy to allow a more flexible display of AMP on the biomaterial surface and demonstrate its efficacy for wound healing. The AMP, tachyplesin I (Tac), is tagged with the polyhydroxyalkanoate-granule-associated protein (PhaP) and immobilized on haloarchaea-produced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) via hydrophobic interaction. The PhaP-Tac coating effectively inhibits the growth of both Gram-negative and Gram-positive bacteria. It also increases the surface hydrophilicity to improve fibroblast proliferation in vitro, and accelerates wound healing by decreasing bacterial counts to below 105 CFU per gram of tissue in a deep-wound mouse model in vivo. Taken together, these findings demonstrate an effective strategy to realize the full potential of AMPs in imparting implants with an anti-microbial activity that is localized and potent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.