Abstract

Ganglioside stimulated neurite outgrowth may be due to ganglioside binding to membrane proteins or to intercalation into the membrane. To test that ganglioside binding proteins could be found on neuronal surfaces, anti-idiotypic ganglioside monoclonal antibodies (AIG mAbs) were generated to mimic the biological properties of the GM1 ganglioside. The AIG mAbs were identified by their ability to bind to a known GM1 binding protein, the beta-subunit of cholera toxin. For the two AIG mAbs studied, AIG5 and AIG20, binding to beta-CT was blocked most strongly by GM1. This data also suggests that AIG5 and AIG20 mimic different but overlapping epitopes of the ganglioside GM1. Western blotting and immunoprecipitation of mammalian tissues reveals four potential ganglioside binding proteins of molecular weight 93, 66, 57, and 45 kDa. Immunocytochemistry demonstrates neuronal surface label with the AIG mAbs, which suggests that gangliosides, enriched on the neuronal surface membrane, are co-localized with putative ganglioside binding proteins. In bioassays, the AIG mAbs promote neuronal sprouting. This shows that these antibodies can be used to study the biological effects of ganglioside binding to neuronal surface proteins, and the role of gangliosides in the activation of neurite outgrowth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.