Abstract

The performance of aircraft anti-icing fluids reduces unusually on aviation composites. It is unclear whether this is due to low substrate thermal conductivity or hydrophobicity. Therefore, we considered experimentally the performance of Newtonian and non-Newtonian aircraft anti-icing fluids on substrates with thermal conductivities from 0.17 to 252 W/m∙K. It was found that the decrease of substrate thermal conductivity promotes the freezing of Newtonian and low viscous Non-Newtonian fluids compared to the thicker Non-Newtonian one. The thermal conductivity effect can be explained by the competition of two heat transfer processes: heat accumulation and the transfer of latent heat. Thus, Newtonian and low viscous Non-Newtonian aircraft anti-icing fluids must be defined on aviation composites together with substrate thermal conductivity, wettability, and roughness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call