Abstract

It has been shown that anti-inflammatory cytokine interleukin-10 (IL-10) can exert anti-hypoxic effect preventing post-hypoxic neuronal hyperexcitability. Yet, exact mechanisms of IL-10 mediated anti-hypoxic action on neuronal function are not fully understood. We suggested that IL-10 can exert its anti-hypoxic action via modulation of activity of two-pore potassium TASK-1 and TASK-3 channels. To study the involvement of TASK-1 and TASK-3 channels we employed a combination of whole-cell patch clamp and pharmacological inhibitory analysis to assess if IL-10 and brief hypoxic episode can modulate K+ background leak current (Ileak) and membrane input resistance (Rin) in cultured hippocampal neurons. We found that IL-10 in a dose-dependent manner can significantly increase Ileak with concomitant reduction in Rin. Neurons that were exposed to brief hypoxic episode on contrary showed significant decrease in Ileak with concomitant increase in Rin. Pretreatment with IL-10 prior hypoxic episode was able to abolish negative effect of hypoxia on Ileak and Rin. IL-10 potentiating action on Ileak and Rin was occluded by co-addition of selective blockers of TASK-1 and TASK-3 channels – ML365 and PK-THPP. Co-addition of LY294002, an inhibitor of PI3-kinase occluded IL-10 action on Ileak and Rin showing involvement of PI3K-associated pathway in IL-10 mediated regulation of TASK channel function. Our results provide new insights into IL-10 mediated neuroprotective and anti-hypoxic actions showing TASK-1 and TASK-3 channels as downstream targets of this anti-inflammatory cytokine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.