Abstract

Insulin resistance as a major problem is associated with type 2 diabetes mellitus. This study investigated the effect of Eryngium billardierei on insulin-resistance induced HepG2 cells. MTT method was used to evaluate the viability of HepG2 cells treated with various doses of E. billardierei extract. An insulin-resistance model was established in HepG2 cells. Next, MTT assay and Acridine orange staining were performed to investigate the viability of cells in the vicinity of different concentrations of insulin, pioglitazone, and E. billardierei extract in an insulin-resistance media. The glucose uptake test was performed to select the optimal insulin concentration. Expression levels of IR, G6Pase, and PEPCK genes were assessed by real-time RT-PCR. According to obtained data, E. billardierei at concentrations of 0.5 and 1mg/mL show no toxicity on cells. Furthermore, based on MTT assay and glucose uptake test 10-5mol/L insulin was chosen as the model group to induce insulin-resistance in HepG2 cells for gene expression analysis. Finally, 1mg/mL E. billardierei not only induced no cytotoxicity but also showed an increase in the expression of IR as well as a reduction in G6Pase and PEPCK level compared to the control and model groups. The obtained data indicated that 1mg/mL E. billardierei might have an anti-insulin resistance effect on insulin-resistance HepG2 cells in vitro and could be a promising candidate with anti-hyperglycemic properties for diabetes treatments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.