Abstract
AbstractValuable propellants have the characteristics of high impulse, low pollution, and strong stability, and oxidizers play a substantial role in determining the performance of propellants. Ammonium dinitramide (ADN) is a relatively promising oxidizer due to its high‐energy and chlorine‐free characteristics. However, although ADN exhibits high energy performance compared with traditional oxidizers, the high hygroscopicity of ADN when exposed to high humidity restricts its broader application in solid propellants. This review highlights the necessity of utilizing anti‐hygroscopicity strategies with ADN to extend its application. The anti‐hygroscopicity mechanism of ADN is summarized by calculations and experimental results. Anti‐hygroscopicity technologies that can be used with ADN include prilling, surface coating, and co‐crystallization, and these technologies are comprehensively summarized herein. This review is intended to provide insight into the use of anti‐hygroscopicity technologies with ADN, highlight the challenges of these methods, and point out future development directions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.