Abstract

The anti-forcing number of a perfect matching M of a graph G is the minimal number of edges not in M whose removal makes M a unique perfect matching of the resulting graph. The anti-forcing spectrum of G is the set of anti-forcing numbers over all perfect matchings of G: In this paper, we prove that the anti-forcing spectrum of any cata-condensed hexagonal system is continuous, that is, it is a finite set of consecutive integers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.