Abstract

A major challenge in the fight to effectively control malaria is the emergence of resistant parasite to drugs used in therapy as well as for chemoprevention. In this study, single nucleotide polymorphisms (SNPs) associated with Plasmodium falciparum resistance to sulfadoxine-pyrimethamine (SP), one of the partner drugs in artemisinin-based therapies (ACTs) were studied in asymptomatic P. falciparum isolates from Cameroon. Dried Blood spots were collected from children with asymptomatic malaria enrolled during a household survey. The P. falciparum dihydrofolate reductase (Pfdhfr), dihydropteroate synthase (Pfdhps) and Kelch 13 genes were amplified and point mutations in these gene sequences were analyzed by sequencing. Among a total of 234 samples collected, 51 showed parasitaemia after microscopic examination of which 47 were P. falciparum mono-infections. Molecular analysis revealed 97.3% of mutant alleles at codons 51I, 59R and 108 N in Pfdhfr gene. In Pfdhps gene the most common mutation was 437G (83.3%); followed by 436A (47.6%) and 436F (28.6%). The association of mutations in the two genes (dhfr + dhps) showed 11 different haplotypes including three sextuple mutants (IRNI + AGKGA, IRNI + AAKGS, IRNI + AGKAS) and one septuple mutant (IRNI + AGKGS). For K13 gene no SNPs were seen in the studied asymptomatic malaria samples. The findings revealed presence of SP-resistant alleles in asymptomatic infected individuals with presence of sextuples and septuple SNPs. This emphasizes that regular profiling of antimalarial drugs resistance markers in such population is essential for malaria control and elimination programmes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call