Abstract

Orthopedic metallic prosthetic implants are commonly made of cobalt chromium (CoCr) alloys. However, such metal-based implants are susceptible to fibrous capsule formation on the implant surface after implantation. At the bone-implant interface, this capsule can prevent implant integration, resulting in loosening and failure. Minimizing the development of such a capsule on the CoCr surface would improve direct bone-implant bonding leading to long-term implant functionality. We evaluated the anti-fibrosis effect of bone morphogenic protein-7 (BMP-7) peptide covalently bonded to CoCr alloy. This peptide, a biomimetic derivation of the knuckle epitope of BMP-7, was conjugated at the N-terminus with a cysteine amino acid. X-ray photoelectron spectroscopy (XPS) and probe binding assay were used to evaluate different stages of grafting and surface functionalization using polydopamine coating. Cellular functions were studied using fibroblast attachment, cell proliferation, and MTT assays. Fibroblasts were grown on functionalized and pristine CoCr substrates, and the efficacy of BMP-7 peptide on anti-fibrosis was analyzed via gene expression and protein expression of fibrosis markers ACTA2, Collagen 1A1, and fibronectin. The peptide functionalized substrates showed significant reduction of fibrosis markers expression after 1 week of incubation compared to controls. BMP-7 signaling pathway activation was shown by the presence of phosphorylation of Smad1/5/8. These findings may contribute to the improvement of CoCr implants in orthopedic surgery applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.