Abstract

Mammalian cardiomyocytes have limited regenerative ability. Cardiac disease, such as congenital heart disease and myocardial infarction, causes an initial loss of cardiomyocytes through regulated cell death (RCD). Understanding the mechanisms that govern RCD in the injured myocardium is crucial for developing therapeutics to promote heart regeneration. We previously reported that ferroptosis, a non-apoptotic and iron-dependent form of RCD, is the main contributor to cardiomyocyte death in the injured heart. To investigate the mechanisms underlying the preference for ferroptosis in cardiomyocytes, we examined the effects of anti-ferroptotic reagents in infarcted mouse hearts. The results revealed that the anti-ferroptotic reagent did not improve neonatal heart regeneration, and further compromised the cardiac function of juvenile hearts. On the other hand, ferroptotic cardiomyocytes played a supportive role during wound healing by releasing pro-angiogenic factors. The inhibition of ferroptosis in the regenerating mouse heart altered the immune and angiogenic responses. Our study provides insights into the preference for ferroptosis over other types of RCD in stressed cardiomyocytes, and guidance for designing anti-cell-death therapies for treating heart disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.