Abstract
The door is a primary target for an explosive attack. The design of special building structure and its blast-resistant door has been reported in the previous literature. However, there is little about the failure analysis and design method for the anti-explosion property of aluminum alloy doors in ordinary buildings. Aiming at the problem of anti-explosion property of aluminum alloy doors in ordinary buildings, plastic deformation was used as the failure model, and a method to improve the anti-explosion property by controlling the external conditions was developed in this study. Based on dimensionless analysis and finite element simulation, the dynamic responses of aluminum alloy doors under blast load were compared with the experimental data, and the correctness of the model was verified. The prediction model for anti-explosion property of aluminum alloy doors was established, which provided a scientific basis to prevent the failure of aluminum alloy doors with different sizes and thicknesses. The critical amount of explosive charge to aluminum alloy doors with different explosion distances or thicknesses was obtained according to the quantitative results. The use of polyurea coating greatly improved the anti-explosion property of the door.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.