Abstract

Lipopolysaccharides (LPS), otherwise termed 'endotoxins', are an integral part of the outer leaflet of the outer-membrane of Gram-negative bacteria. Lipopolysaccharides play a pivotal role in the pathogenesis of 'Septic Shock', a major cause of mortality in the critically ill patient, worldwide. The sequestration of circulatory endotoxin may be a viable therapeutic strategy for the prophylaxis and treatment of Gram-negative sepsis. We have earlier shown that the pharmacophore necessary for small molecules to bind LPS involves two protonatable cationic functions separated by about 15 A, permitting the simultaneous interaction with the negatively charged phosphates on lipid A, the toxically active center of endotoxin. In this report, screening of a multi-thousand membered polyamine library through the combined use of computational and bioassay-guided screens resulted in the discovery of two novel classes of LPS-binding agents. These are represented by the 1) spermine sulfonamides and 2) C-aryl-substituted spermine analogs. We present the selection approach, screening results, computational multivariate analyses and initial structure-activity relationship evaluation herein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.