Abstract

BackgroundSarcopoterium spinosum (S. spinosum) is used by Bedouin medicinal practitioners for the treatment of diabetes. While the anti-diabetic activity of S. spinosum root extract was validated in previous studies, the activity of aerial parts of the same plants has not been elucidated yet. The aim of this study was to clarify the glucose lowering properties of the aerial parts of the shrub.MethodsAnti-diabetic properties were evaluated by measuring the activity of carbohydrate digesting enzymes, glucose uptake into 3 T3-L1 adipocytes, and insulin secretion. Insulin signaling cascade was followed in L6 myotubes using Western blot and PathScan analysis.ResultsActivity of α-amylase and α-glucosidase was inhibited by extracts of all S. spinosum organs. Basal and glucose-induced insulin secretion was measured in Min6 cells and found to be enhanced as well. Glucose uptake was induced by all S. spinosum extracts, with roots found to be the most effective and fruits the least.The effect of S. spinosum on Akt phosphorylation was minor compared to insulin effect. However, GSK3β and PRAS40, which are downstream elements of the insulin cascade, were found to be highly phosphorylated by S. spinosum extracts. Inhibition of PI3K and Akt, but not AMPK and ERK, abrogated the induction of glucose uptake by the aerial parts of the shrub.ConclusionThe aerial organs of S. spinosum have anti-diabetic properties and may be used as a basis for the development of dietary supplements or to identify new agents for the treatment of type 2 diabetes.

Highlights

  • Sarcopoterium spinosum (S. spinosum) is used by Bedouin medicinal practitioners for the treatment of diabetes

  • lactate dehydrogenase (LDH) release In order to identify the dose-range for the study, the dose-response cytotoxicity effect of the various extracts was measured

  • Α-amylase and α-glucosidase inhibition The capability of the extracts to inhibit α-amylase (Fig. 2) and α-glucosidase (Fig. 3) activity was measured. Both extracts of roots and aerial parts of S. spinosum inhibited the activity of α-amylase; the Vmax for R/S. spinosum and F/S. spinosum extracts was much higher than

Read more

Summary

Introduction

Sarcopoterium spinosum (S. spinosum) is used by Bedouin medicinal practitioners for the treatment of diabetes. While the anti-diabetic activity of S. spinosum root extract was validated in previous studies, the activity of aerial parts of the same plants has not been elucidated yet. Sarcopoterium spinosum (S. spinosum) is mentioned as a medicinal shrub in a large number of ethnobotanical surveys, documenting the use of S. spinosum aqueous root extract by traditional medicinal practitioners for the treatment of diabetes, as well as for cancer therapy and pain relief [5,6,7,8,9,10]. The anti-diabetic properties of root extract of S. spinosum was validated both in-vitro and in-vivo. Lipolysis was inhibited by the extract and the Elyasiyan et al BMC Complementary and Alternative Medicine (2017) 17:356 signaling pathway of glycogen synthesis was activated [11] All of these functions suggested that S. spinosum root extract has insulin-mimetic properties. In-vivo studies revealed that the glucose lowering properties of S. spinosum are accompanied by lower serum insulin levels and improved insulin tolerance [11, 12], indicating that when S. spinosum is administrated to the animal, the improvement in insulin sensitivity enables a reduction, rather than a stimulation, of insulin release

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.