Abstract
In this work, we systematically investigated the effect of four bis(benzimidazole) derivatives containing different heteroatoms in molecular structures on inhibiting corrosion of N80 steel in 0.5 mmol·l−1 H2S solution by potentiodynamic polarization, electrochemical impedance spectroscopy and metallographic microscope. The results showed that within the range of 0.1–1.0 mmol·l−1, the adsorption of bis(benzimidazole) derivatives on N80 steel surface was found to follow Langmuir adsorption isotherm. Meanwhile, stable adsorbing monolayer between inhibitors and the metal surface was formed, which was confirmed by thermodynamic adsorption parameters (Kads, ). This series of bis(benzimidazole) derivatives exhibited obvious corrosion inhibitory properties for N80 steel. Moreover, they could both slow down the anodic dissolution of iron and the cathodic reduction reaction as mixed type corrosion inhibitors. The optimal inhibition efficiency was obtained for 1,3‐bis(benzimidazl‐2‐yl)‐2‐thiapropane (BBMS). Hopefully, this series of inhibitors might find applications in anti‐corrosion and many other areas. Copyright © 2012 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.