Abstract
We study the anti-commuting variety which consists of pairs of anti-commuting $n\times n$ matrices. We provide an explicit description of its irreducible components and their dimensions. The GIT quotient of the anti-commuting variety with respect to the conjugation action of $GL_n$ is shown to be of pure dimension $n$. We also show the semi-nilpotent anti-commuting variety (in which one matrix is required to be nilpotent) is of pure dimension $n^2$ and describe its irreducible components.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.