Abstract

A novel drug eluting retrievable vena cava filter (RVCF) with a heparin-modified poly(ε-caprolactone) (hPCL) coating containing rapamycin was prepared by electrospraying. The in vitro drug release pattern showed that the encapsulated rapamycin in the coating can be sustainably released within one month, whereas activated partial thromboplastin time (APTT) and in vitro cell culture showed that the drug eluting RVCF can effectively extend blood clotting time and inhibit smooth muscle cell (SMC) and endothelial cell (EC) proliferation, respectively. The as-prepared drug eluting RVCF and corresponding commercial RVCF were implanted into the vena cava of sheep. The retrieval operation at a predetermined time point showed that the drug eluting RVCF had a much higher retrieval rate than the commercial RVCF. Comprehensive investigations, including histological, immunohistological and immunofluorescence analyses, on explanted veins were carried out. The results demonstrated that the as-prepared RVCF possessed excellent antihyperplasia properties in vivo, significantly improving the retrieval rate and extending the in vivo dwelling time in sheep. Consequently, the drug eluting RVCF has promising potential for application in the clinic to improve RVCF retrieval rates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call