Abstract

Dental caries remains one of the most pervasive infectious disease around the world. Protection against dental caries can be achieved experimentally by eliciting salivary IgA targeting surficial antigens of S. mutans, however, no such a vaccine has been launched for human use yet. Live vectored vaccines hold the greatest feasibility to induce potent and long-lasting immunity in the host. The FDA approved intranasal cold-adapted influenza vaccine has been used in clinical settings for many years. The vaccine can not only induce broad adaptive immune responses especially mucosal immunity, but the member strains can also circumvent existing immunity, presenting promising candidates for live vectored anti-caries vaccine. Moreover, the genetic techniques for modification of cold-adapted influenza viruses are well developed and widely applicable. Thus, we hypothesize that effective anti-caries vaccine can be developed with the backbone of cold-adapted influenza viruses by inserting specific antigenic identifier sequences of S. mutans into the viral genome, which is anticipated to protect against dental caries in humans with easy inoculation. The immune efficacies of recombinant cold-adapted influenza viruses expressing exogenous antigens have been verified by in vivo experiments for multiple infectious diseases, giving us great confidence to validate the safety properties and protection effect with this chimeric vaccine in animals or even humans. Existing data suggests that the live anti-caries vaccine may help improve public oral health by controlling the caries disease itself.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call