Abstract

2024Al and SiC/2024Al were used to encapsulate the AD95 Al2O3 ceramics by Vacuum-high Pressure Infiltration Method. Their anti-bullet properties are not good with Efm of 5.17 and 4.65 respectively, and is far lower than that of the ceramic without encapsulation. The latter one can generate higher hydrostatic pressure between the bullet and ceramic during penetration process. However, in encapsulated targets, the ductile materials in front of the ceramic can decelerate the bullet, so the pressure between bullet and ceramic is not great enough to break the bullet. Propagated microcracks along with the bonding interface were observed in plates consisting of encapsulated Al2O3. These microcraks lead to the interfacial debonding between Al2O3 and encapsulating materials. Consequently, the anti-bullet property of the ceramic encapsulated by metal or composite is depressed. Further more, the different interface bonding conditions and fracture modes cause the discrepancy of anti-bullet property in two kinds of targets with encapsulation structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.