Abstract

BackgroundBorrelia sp. is a causative pathogen of Lyme disease which has become a worldwide health concern. Non-toxic approaches especially directed toward latent persistent forms of this pathogen are desired. Lipids in the form of volatile and non-volatile oils, and fatty acids with proven anti-borreliae efficacy could become an additional support or an alternative for consideration in treatment approaches.MethodsIn this study we investigated 47 lipids (30 volatile and non-volatile oils, and 17 fatty acids) of plant and animal origin against typical motile, knob/round-shaped persisters, and biofilm-like aggregates of Borrelia burgdorferi s.s. and Borrelia garinii, which are identified as pathogenic factors of Lyme disease in the USA and Europe, using direct microscopic counting and spectrofluorometric measurements.ResultsOut of all examined lipids, 5 oils (Bay leaf oil, Birch oil, Cassia oil, Chamomile oil German, and Thyme oil) at or below 0.25%, and 3 fatty acids (13Z,16Z Docosadienoic acid, erucic acid, and petroselinic acid) at or below 0.75 mg/ml, showed bactericidal activity against typical motile spirochetes and knob/round-shaped persisters. Only Bay leaf oil and Cassia oil, including their major constituents, eugenol and cinnamaldehyde, showed to target biofilm-like aggregates of both tested Borrelia spp. at the same concentration, although with 20–30% eradication mark.ConclusionBased on obtained results, volatile oils were more potent than non-volatile oils, and unsaturated fatty acids were more effective than saturated fatty acids. Among all tested oils, Bay leaf oil and Cassia oil, with their major components eugenol and cinnamaldehyde, seem to have the highest anti-borreliae efficacy.

Highlights

  • Borrelia sp. is a causative pathogen of Lyme disease which has become a worldwide health concern

  • The triple combination of antibiotics at the concentration of 0.03 mg/ml (0.01 mg/ml, each) was used as a positive control since this combination at this particular concentration was previously reported to be effective against both typical motile spirochetes and knob/round-shaped persisters of Borrelia burgdorferi [20, 26]

  • The results obtained from spectrofluorometric measurements have been further validated by direct counting using a dark field microscope and a fluorescence microscope for Bay leaf oil, Cassia oil and 13Z,16Z docosadienoic acid, all selected as agents with the highest anti-borreliae efficacy among all compounds tested in this study (Table 3)

Read more

Summary

Introduction

Borrelia sp. is a causative pathogen of Lyme disease which has become a worldwide health concern. Is a causative pathogen of Lyme disease which has become a worldwide health concern. Non-toxic approaches especially directed toward latent persistent forms of this pathogen are desired. The causative factor of this illness is a bacterium of genus Borrelia which is an invasive, host-dependent, semiaerophilic, and slow-growing pathogen [2]. These features attribute to the long delays when diagnosing LD and, in many cases, a correct and precise diagnosis is a challenge. Not fully proven and accepted, it is believed that these latent forms might be one of the possible causes of the infection persisting in animal and human organisms [7,8,9,10,11]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call