Abstract

The aim of this study was to determine the effect of polyphenol-rich ethanol extract of bee pollen (EEP) on atherosclerosis induced by a high-fat diet in ApoE-knockout mice. EEP was given with feed in two doses of 0.1 and 1 g/kg body mass (BM). The studies have been conducted in a period of 16 weeks. The following factors were estimated: total cholesterol (TC), oxidized low density lipoproteins (ox-LDL), asymmetric dimethylarginine (ADMA), angiotensin-converting enzyme (ACE) and angiotensin II (ANG II) in the 5th, 10th, 12th, 14th, and 16th week of the experiment. In the last, i.e., 16th week of the studies the development of coronary artery disease (CAD) was also estimated histopathologically. Supplementing diet with EEP resulted in decreasing TC level. EEP reduced oxidative stress by lowering the levels of ox-LDL, ADMA, ANG II and ACE. EEP protected coronary arteries by significantly limiting the development of atherosclerosis (the dose of 0.1 g/kg BM) or completely preventing its occurrence (the dose of 1 g/kg BM). The obtained results demonstrate that EEP may be useful as a potential anti-atherogenic agent.

Highlights

  • A lot of studies have focused on pro-health and curative properties of natural products, including bee products, and bee pollen is among these valuable apitherapeutics

  • Taking into consideration various biological activities of bee pollen ingredients, the aim of the current study was to determine the effect of polyphenol-rich extract of bee pollen (EEP) on atherosclerosis induced by a high-fat diet in ApoE-knockout mice

  • We evaluated the anti-atherogenic effect of polyphenol-rich extract of bee pollen on the development of atherosclerosis induced by a high-fat diet in ApoE-knockout mice

Read more

Summary

Introduction

A lot of studies have focused on pro-health and curative properties of natural products, including bee products, and bee pollen is among these valuable apitherapeutics. It is a product of plant origin, collected and partly processed by bees. It is produced from pollen grains enriched with nectar, honey and honeybee salivary glands secretion. Nutritious properties of bee pollen result from the presence of such substances as proteins, amino acids, carbohydrates, lipids (including ω-3 and ω-6 acids), vitamins and bio-elements. Therapeutic and protective effects are related to the content of functional compounds such as polyphenols [4,5,6,7]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call