Abstract

The objective of this study is to construct and identify an inducible lentiviral vector containing improved tet-on system and FasL gene and observe its effects on pristane-induced arthritis (PIA). FasL gene was amplified from the spleen of Lewis rats by RT-PCR. The tet-on system was improved with insertion of a chicken chromatin insulator (cHS4) element and an rtTA-dependent, tet-responsive element containing modifications of the tetO sequence (TRE-tight1). Pro-apoptosis effect of the vector pTREFasLcHS4V16 on synovial cells was evaluated by flow cytometer in vitro. Anti-arthritis effects of the vector on PIA after intra-articular injection were observed by clinical evaluation and joint histology. Cytokines in synovial tissue were measured by ELISA. The recombinant inducible lentiviral vector pTREFasLcHS4V16 was successfully constructed. The expression response and the pro-apoptosis effects of the vector were doxycycline dose-dependent. The vector injected intra-articularly attenuated the severity of PIA and decreased the level of cytokines in inflamed joints. pTREFasLcHS4V16 with an improved tet-on system can precisely regulate the expression of FasL gene and apoptosis. Anti-arthritis effects were observed after intra-articular injection of the inducible vector.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.