Abstract

Hepatocyte growth factor (HGF) is a ligand of the receptor tyrosine kinase encoded by the c-Met protooncogene. HGF/Met signaling has multifunctional effects on various cell types. We sought to determine the role of HGF/Met in apoptosis and identify signal transducers involved in this process. In experiments with human SK-LMS-1 leiomyosarcoma cells, we show that the Akt kinase is activated by HGF in a time- and dose-dependent manner by phosphatidylinositol 3-kinase (PI3-kinase). Akt is also activated by active tumorigenic forms of Met, i.e., ligand-independent Tpr-Met, a truncated and constitutively dimerized form of Met, and a mutationally activated version of Met corresponding to that found in human hereditary papillary renal carcinoma. In NIH 3T3 cells transfected with wild-type Met, HGF inhibits apoptosis induced by serum starvation and UV irradiation. HGF-induced survival correlates with Akt activity and is inhibited by the specific PI3-kinase inhibitor LY294002, indicating that HGF inhibits cell death through the PI3-kinase/Akt signal transduction pathway. Furthermore, transiently transfected Tpr-Met activates Akt (both Akt1 and Akt2) and protects cells from apoptosis. Mitogen-activated protein kinase (MAPK) also is activated by HGF and rescues cells from apoptosis, although the cytoprotective effect is less marked than for PI3-kinase/Akt. Blocking MAPK with the specific MAPK kinase inhibitor PD098059 impairs the ability of HGF to promote cell survival. Similar results were obtained with NIH 3T3 cells expressing the fusion protein Trk-Met and stimulated with nerve growth factor, the Trk ligand. These results demonstrate that HGF/Met is capable of protecting cells from apoptosis by using both PI3-kinase/Akt and, to a lesser extent, MAPK pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.