Abstract

The current study was designed to investigate the protective effects of Vitamin D (VD) on hippocampal neurogenesis, apoptosis, and subsequent hippocampal-dependent learning and memory performance in hypothyroid juvenile rats. Twenty eight male Wistar rats were randomly divided into four groups as; control, Hypothyroid (Hypo), Hypo-VD100 and Hypo-VD500. Hypothyroidism was induced by giving 0.05 % propylthiouracil (PTU), and VD (100 or 500 IU/kg) treatment was performed daily by gavage. At the end of treatment, Morris water maze (MWM) was carried out and evaluated hippocampal neurogenesis, apoptosis, and dark neurons (DNs). Our results revealed that the escape latency and the traveled distance to find the platform in the Hypo group were significantly longer but the time spent and distance traveled in the target area in probe trial was lower than the control group. Hypothyroidism was accompanied by a marked decrease in hippocampal neurogenesis, and a significant increase in the number of apoptotic neurons and DNs compared to the control group. VD decreased escape latency and the traveled distance to find the platform but increased the time spent and distance traveled in the target area in probe trial than the Hypo group. VD also increased neurogenesis, reduced apoptosis and DNs production compared to the Hypo group. In conclusion, these results support a role for VD in the restoring hippocampal neurogenesis impairment, reducing neuronal apoptosis, and DNs in hypothyroid rats as well as raise the possibility that VD may contribute as a therapeutic approach to improve the learning and memory deficits associated with hypothyroidism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.