Abstract

BackgroundThe progression and metastasis of tumors are typically accompanied by angiogenesis. Crucially, vascular endothelial growth factor (VEGF) and its receptors (VEGFRs) play a significant role in tumor-associated angiogenesis. In this study, the aim was to investigate the antitumor effect of combining bevacizumab (Bev) with anlotinib (An) on colorectal cancer (CRC). MethodsThe CCK-8 assay, EdU assay, and Annexin V staining were conducted to evaluate the proliferation and apoptosis of CRC cells in vitro. The migration capability of CRC cells and HUVECs was assessed using the Transwell assay. Additionally, the tube formation capability of HUVECs was investigated. Furthermore, the antitumor and antiangiogenic effects were evaluated in the BALB/c mice model using immunohistochemistry, TUNEL staining, and 18F-FDG PET/CT imaging. Finally, we analyzed the inhibitory effect of Bev and/or An on related signaling effectors through western blotting. ResultsThe in vivo CRC mice model revealed that the combination of Bev + An significantly suppressed tumor formation and angiogenesis. Bev + An inhibited tumor glucose metabolism and increased the median survival period in tumor-bearing mice. Mechanistically, the expressions of VEGF, VEGFR2, PDGFR, and FGFR, as well as the phosphorylation levels of AKT, were inhibited after Bev+An treatment. In conclusion, the dual vertical targeting of VEGF and VEGFR in the CRC mice model strongly inhibited tumor growth and angiogenesis, with the suppression of the AKT signaling pathway playing a partial role.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call