Abstract
The prevalence of cryptorchidism has increased over the past decades, yet its origins remain poorly understood. Testis descent is dependent on androgens and likely affected by endocrine disrupting compounds (EDCs), targeting the androgen receptor (AR). We investigated the association between anti-androgenic activity, not derived from natural hormones, in maternal breast milk and impaired testis descent among boys. We performed a case-control study based on 199 breast milk samples from 94 mothers of cryptorchid boys and 105 random non-cryptorchid boys participating in the Norwegian HUMIS (Human Milk Study) cohort. For each participant, apolar, and polar fractions were extracted, and combined to reconstitute a mixture. Anti-androgenic activity was measured in all three fractions using the human cell-based in vitro anti-AR CALUX® assay and expressed in μg of flutamide equivalent, a well-known antiandrogen. Results from fraction analyses were compared among boys with cryptorchidism and controls using multiple logistic regression, controlling for appropriate confounders identified using a directed acyclic graph. Children's daily exposure to anti-androgenic EDCs through breastfeeding was estimated to 78 μg flutamide eq./kg of body weigh/day. The activity was higher in the polar fraction (1.48 ± 1.37 μg flutamide eq./g of milk) mainly representing non-persistent chemicals, in contrast to other fractions. However, the activity in the polar extracts was decreased when in mixtures with the apolar fraction, indicating synergistic interactions. No significant difference in the activity was observed according to cryptorchid status for polar, apolar or mixed breast milk fractions. The study showed anti-androgenic activity in nearly all human milk samples, and at levels higher than the advisory threshold. However, no significant association was observed between cryptorchidism and antiandrogenic activity measured in either polar, apolar, or mixture fractions derived from breast milk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.