Abstract

Alzheimer's disease is characterized by the presence of extracellular deposits of amyloid, primarily composed of the amyloid β-protein (Aβ). A growing body of evidence indicates that oligomeric forms of Aβ play a critical role in disease causation. Soybean isoflavones are flavonoids with an isoflavone backbone. Isoflavones have been reported to protect against Aβ-induced neurotoxicity in cultured cell systems, the molecular mechanisms remain unclear. Our previous studies demonstrated that red wine-related flavonoids with a flavone backbone are able to inhibit Aβ assembly and destabilize preformed Aβ aggregates. Here, we show that isoflavones, especially glycitein and genistein, have anti-fibrillization, anti-oligomerization and fibril-destabilizing effects on Aβ1–40 and Aβ1–42in vitro at physiological pH and temperature, by using nucleation-dependent polymerization monitored by thioflavin T fluorescence, atomic force microscopy, electron microscopy, and photo-induced cross-linking of unmodified proteins followed by SDS-PAGE. Our three-dimensional fluorescence spectroscopic analyses demonstrated that glycitein interacted with Aβ monomers, oligomers and fibrils, indicating specific binding of glycitein to these Aβ species. Glycitein also interacted with different Aβ fragments (Aβ1–42, Aβ1–40, Aβ1–16 and Aβ25–35), exhibiting the highest fluorescence enhancement with Aβ25–35. We speculated that glycitein's anti-amyloidogenic properties are specifically mediated by its binding to Aβ monomers, oligomers and fibrils. Isoflavones may hold promise as a treatment option for preventative strategies targeting amyloid formation in Alzheimer's disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.