Abstract

Ethnopharmacological relevanceHedyotis diffusa is a traditional ethnomedicinal plant in local communities in northeastern Asia and used to treat inflammation, nervous breakdown, among others. In recent years, it has been applied in the treatment of Alzheimer's disease (AD), while the specific chemical components responsible for the activity remain need to be explored. Aim of the studyTo prepare, screen and identify the potential anti-AD active components from Hedyotis diffusa. Materials and methodsThe acetylcholinesterase (AChE) inhibitory activity of four different extracts of Hedyotis diffusa were initially assessed using a spectrophotometric Ellman's method. A more accurate LC-MS/MS screening method combining functional enzyme assay and affinity ultrafiltration (AU) screening assay was developed and applied for the screening of natural compound inhibitors of AChE from Hedyotis diffusa. The binding mode was further investigated between protein and ligands via molecular docking. Subsequently, CL4176, a transgenic nematode model for AD, was used for activity validation of one of these components. ResultsN-butanol extract of Hedyotis diffusa (NHD) appeared significant inhibitory activities on AChE, were chosen to delve deeper. Five bioactive components targeting AChE were screened out and identified using AU coupled to liquid chromatography-mass spectrometry. Molecular docking technique further confirmed the results of the screening assay. Finally, quercetin-3-O-sophoroside (QS) was confirmed as a potent anti-AD agent by in vivo experiments in C. elegans. ConclusionThis study explores a new idea for screening anti-AD active components from traditional medicine. The findings provide a molecular structure and bioactivity basis for future potential applications of Hedyotis diffusa in medical industries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call