Abstract

Chromaffin cells release catecholamine- and peptide-containing granules by exocytosis, by a mechanism involving movement of secretory granules towards the cell membrane, their apposition to it and the fusion of the granule membrane with the plasma membrane. One of the two subunits of membrane-associated brain spectrin, alpha-fodrin is an actin-binding protein which is found at the periphery of chromaffin cells and may be involved in secretion. Because cultured chromaffin cells can be permeabilized with detergents, giving pores large enough to permit the entry of immunoglobulin molecules, we used permeabilized cells to test the effect of specific antibodies on secretory mechanisms. Incubation of permeabilized cells with polyclonal immunoaffinity-purified monospecific anti-alpha-fodrin antibody or its Fab fragments did not modify basal release but did specifically inhibit Ca2+-induced catecholamine release by exocytosis. Our observations indicate that fodrin and the cytoskeleton participate in the release mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call