Abstract

Caloric restriction prolongs the lifespan of many species. Therefore, investigators have researched the usefulness of caloric restriction for healthy lifespan extension. Sirt1, an NAD(+)-dependent deacetylase, was identified as a molecule necessary for caloric restriction-related anti-aging strategies. Sirt1 functions as an intracellular energy sensor to detect the concentration of NAD(+), and controls in vivo metabolic changes under caloric restriction and starvation through its deacetylase activity to many targets including histones, nuclear transcriptional factors, and enzymes. During the past decade, investigators have reported the relationship between disturbance of Sirt1 activation and the onset of aging- and obesity-associated diseases such as diabetes, cardiovascular disease and neurodegenerative disorders. Consequently, a calorie restriction-mimetic action of Sirt1 is now expected as a new therapy for these diseases. In addition, recent studies have gradually clarified the role of Sirt1 in the onset of kidney disease. Its activation may also become a new target of treatment in the patients with chronic kidney disease including diabetic nephropathy. In this article, we would like to review the role of Sirt1 in the onset of kidney disease based on previous studies, and discuss its possibility as the target of treatment in diabetic nephropathy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.