Abstract

Realizing high-performance soft robotic grippers is challenging because of the inherent limitations of the soft actuators and artificial muscles that drive them, including low force generation, small actuation range, and poor compactness to name a few. Despite advances in this area, realizing compact soft grippers, which exhibit high dexterity and force output, is still challenging. This article explores using twisted string actuators (TSAs) to drive a soft robotic gripper. TSAs have been widely used in numerous robotic applications, but their inclusion in soft robots has been limited. The proposed design of the gripper was inspired by the human hand, with four fingers and a thumb. Tunable stiffness was implemented in the fingers by using antagonistic TSAs. The fingers' bending angles, actuation speed, blocked force output, and stiffness tuning are experimentally characterized. The gripper achieves a score of 6 on the Kapandji test and recreate 31 of the 33 grasps of the Feix GRASP taxonomy. It exhibits a maximum grasping force of 72 N, which is almost 13 times its own weight. A comparison study reveals that the proposed gripper exhibits equivalent or superior performance compared to other similar soft grippers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.