Abstract
AbstractGlobally, heat stress (HS) is nearly certain to increase rapidly over the coming decades, characterized by increased frequency, severity, and spatiotemporal extent of extreme temperature and humidity. While these characteristics have been investigated independently, a holistic analysis integrating them is potentially more informative. Using observations, climate projections from the CMIP5 model ensemble, and historical and future population estimates, we apply the IPCC risk framework to examine present and projected future potential impact (PI) of summer heat stress for the contiguous United States (CONUS) as a function of non‐stationary HS characteristics and population exposure. We find that the PI of short‐to‐medium duration (1–7 days) HS events is likely to increase more than three‐fold across densely populated regions of the U.S. including the Northeast, Southeast Piedmont, Midwest, and parts of the Desert Southwest by late this century (2060–2099) under the highest emissions scenario. The contribution from climate change alone more than doubles the impact in the coastal Pacific Northwest, central California, and the Great Lakes region, implying a substantial increase in HS risk without aggressive mitigation efforts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.