Abstract

Coastal and shelf environments support high levels of biodiversity that are vital in mediating ecosystem processes, but they are also subject to noise associated with mounting levels of offshore human activity. This has the potential to alter the way in which species interact with their environment, compromising the mediation of important ecosystem properties. Here, we show that exposure to underwater broadband sound fields that resemble offshore shipping and construction activity can alter sediment-dwelling invertebrate contributions to fluid and particle transport - key processes in mediating benthic nutrient cycling. Despite high levels of intra-specific variability in physiological response, we find that changes in the behaviour of some functionally important species can be dependent on the class of broadband sound (continuous or impulsive). Our study provides evidence that exposing coastal environments to anthropogenic sound fields is likely to have much wider ecosystem consequences than are presently acknowledged.

Highlights

  • Coastal and shelf environments support high levels of biodiversity that are vital in mediating ecosystem processes, but they are subject to noise associated with mounting levels of offshore human activity

  • We found no evidence that exposure to continuous or impulsive sound fields over 7 days affected tissue concentrations of glucose (Ruditapes philippinarum, L-ratio = 0.393, d.f. = 2, p = 0.822; Nephrops norvegicus, L-ratio = 4.439, d.f. = 2, p = 0.109; Amphiura filiformis, L-ratio = 2.967, d.f. = 2, p = 0.227; Supplementary Figure S1) or lactate (R. philippinarum, F = 3.378, d.f. = 2, p = 0.068, Supplementary Model S1; N. norvegicus, L-ratio = 2.829, d.f. = 2, p = 0.243; A. filiformis, L-ratio = 0.389, d.f. = 2, p = 0.824; Supplementary Figure S2)

  • Pearson product moment correlations between lactate and glucose showed that changes in glucose mobilisation were not associated with changes in anaerobic metabolism (R. philippinarum, r = 0.24, t = 0.887, d.f. = 13, p = 0.39; N. norvegicus, r = 0.28, t = 1.053, d.f. = 13, p = 0.31; A. filiformis, r= 0.39, t = 1.521, d.f. = 13, p = 0.15)

Read more

Summary

Introduction

Coastal and shelf environments support high levels of biodiversity that are vital in mediating ecosystem processes, but they are subject to noise associated with mounting levels of offshore human activity This has the potential to alter the way in which species interact with their environment, compromising the mediation of important ecosystem properties. It is known that context-dependent changes to organism physiology can alter species’ behaviour that pre-empt measureable changes in a species’ functional contribution to ecosystem properties[32,33] This presents the possibility that increased exposure to different types of intense underwater sound may adversely impact the faunal mediation of important ecosystem processes that underpin the delivery of benefits to society, including carbon storage and nutrient cycling. We speculated that these responses would affect particle-mixing and fluid transport behaviour, important mediators of nutrient regeneration in benthic environments

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.