Abstract
Mountainous background areas are typically considered to have a clean atmosphere where peroxyacetyl nitrate (PAN) can be decomposed. This study demonstrated that PAN was photochemically formed with a simulated production rate of 0.28 ± 0.06 ppbv h-1 in the Nanling mountains (1690 m a.s.l.) of South China and that net PAN formation was dependent on both volatile organic compounds (VOCs) and NOx precursors (transition regime). In contrast to dominated acetaldehyde oxidation in previous urban and rural research, PAN at Nanling was primarily formed by methylglyoxal (38%), acetaldehyde (28%), radicals (20%), and other oxygenated volatile organic compounds (OVOCs) (13%). Moreover, when polluted air masses invaded the Nanling mountains, the PAN production rate was altered, primarily because anthropogenic aromatics intensified PAN formation via the oxidized pathways of methylglyoxal, other OVOCs, and radicals. Finally, net PAN formation at Nanling reduced the hydroxyl radical level by consuming NOx, impaired local radical cycling, and thereby suppressed local O3 production. This suppressing effect was exacerbated on polluted days. The findings of this study deepen our understanding of PAN photochemistry and the impact of anthropogenic intrusions on the background atmosphere of mountainous regions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.