Abstract

Background Animals rely on sound to mediate a myriad of daily activities, and anthropogenic noise is a pollutant that alters the natural soundscape within which they are active. As human infrastructure expands, broadband anthropogenic noise increases, which can affect behaviors of free-living nocturnal animals. Mice are nocturnal animals that produce ultrasonic calls as part of their behavioral repertoire. Methods We assessed effects of anthropogenic and natural noise on the behaviors of wild deer mice (Peromyscus maniculatus) and woodland jumping mice (Napaeozapus insignis), two species of mice that produce ultrasonic calls. We measured activity, foraging behavior at a foraging tray, and calling behavior to broadcasts of natural and anthropogenic noise, compared to a baseline with no broadcasting, at 25 focal areas in the Southern Appalachian Mountain Range of North Carolina, USA. Results Deer mice exposed to anthropogenic noise spent less time in focal areas with broadcasted anthropogenic noise. Mice took longer to begin foraging in the presence of anthropogenic noise, they spent less time at the foraging tray, and left fewer husks but consumed the same number of seeds as mice exposed to natural noise. Deer mice were less likely than woodland jumping mice to be the first to enter the focal area and approach food when in the presence of anthropogenic noise. Both species produced few ultrasonic calls in the presence of broadcasted natural and anthropogenic noise compared to their baseline level of calling. We present the first calls recorded from woodland jumping mice. Conclusion Anthropogenic noise affects activity, foraging behavior, and calling behavior of nocturnal mice. Natural noise also affects the calling behavior of mice. Mouse species respond differently to anthropogenic noise, with deer mice appearing more sensitive to anthropogenic noise than woodland jumping mice. Responses to noise could have important effects on the ecology of mice and these two species respond differently. Species differences should be considered when mitigating the effects of noise in conservation ecology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call