Abstract

Greenhouse gas emissions from urban rivers play a crucial role in global carbon (C) cycling, this is tightly linked to dissolved C in rivers but research gaps remain. The effects of urbanization and anthropogenic land-use change on riverine dissolved carbon dynamics were investigated in a temperate river, the River Kelvin in UK. The river was constantly a source of methane (CH4) and carbon dioxide (CO2) to the atmosphere (excess concentration of CH4 ranged from 13 to 4441 nM, and excess concentration of CO2 ranged from 2.6 to 230.6 μM), and dissolved C concentrations show significant spatiotemporal variations (p < 0.05), reflecting a variety of proximal sources and controls. For example, the concentration variation of dissolved CH4 and dissolved CO2 were heavily controlled by the proximity of coal mine infrastructure in the tributary near the river head (~ 2 km) but were more likely controlled by adjacent landfills in the midstream section of the rivers main channel. Concentration and isotopic evidence revealed an important anthropogenic control on the riverine export of CO2 and dissolved organic carbon (DOC). However, dissolved inorganic carbon (DIC) input via groundwater at the catchment scale primarily controlled the dynamics of riverine DIC. Furthermore, the positive relationship between the isotopic composition of DIC and CO2 (r = 0.79, p < 0.01) indicates the DIC pool was at times also significantly influenced by soil respiratory CO2. Both DIC and DOC showed a weak but significant correlation with the proportion of urban/suburban land use, suggesting increased dissolved C export resulting from urbanization. This research elucidates a series of potentially key effects anthropogenic activities and land-use practices can have on riverine C dynamics and highlights the need for future consideration of the direct effects urbanization has on riverine C dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.