Abstract

Human activities can accelerate the antibiotic resistome prevalence and pose threats to ecological safety and public health globally. However, antibiotic resistance gene (ARG) mobility and dissemination into bacterial pathogens under anthropogenic disturbances are still poorly understood. Here, we used a metagenomic approach to profile the biogeography of ARGs and pathogenic antibiotic resistant bacteria (PARB) under anthropogenic disturbances along the Yarlung Tsangpo River. Results showed the ARGs was dominated by bacA gene along the Yarlung Tsangpo River on the Tibetan Plateau. The ARG composition was differently impacted by rapid urbanization and dam construction, which urbanization could promote ARGs resistant to sulfonamide and tetracycline, whereas dam construction could elevate the resistance to chloramphenicol and aminoglycoside. Land use pattern was identified as a critical factor influencing ARG composition under anthropogenic disturbances, as it could directly reflect the land degradation level and indicate the inputs of ARG-selective chemicals of different human activities. Moreover, despite of the lack of variation in ARG relative abundance, PARB were highly promoted by anthropogenic activities, indicating increasing ARG dissemination to pathogen. We found that human-impacted environments harbored high proportion of mobile genetic elements (MGEs), and the MGE carrying ARGs also increased under anthropogenic disturbances in the pathogenic hosts, which confirmed that anthropogenic activities could promote ARG horizontal gene transfer. Furthermore, anthropogenic activities could influence PARB assembly processes. Basically, stochastic processes dominated PARB assembly along the river, and with increasing level of anthropogenic activities, these processes shifted from undominated stochastic processes to dispersal limitation. In summary, this study provides useful strategies in watershed resistome management and reduction of ARG dissemination to pathogens, which should consider the mode and intensity of human activity and its potential influence on horizontal gene transfer and assembly processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call