Abstract
During April 1986, as part of an international arctic air chemistry study (AGASP-2), ground level observations of aerosol trace elements, oxides of sulphur and nitrogen and particle number size distribution were made at Alert Canada (82.5N, 62.3W). Pollution haze was evident as indicated by daily aerosol number (size > 0.15 μm diameter) and SO4 = concentrations in the range 125 – 260 cm−3 and 1.6 – 4.5 μg m−3, respectively. Haze and associated acidic gases tended to increase throughout the period. SO2 and peroxyacetylnitrate (PAN) mixing ratios were in the range 140 – 480 and 370 – 590 ppt(v), respectively. About 88% of the total end-product nitrogen was in the form of PAN. In air dried to 2% relative humidity by warming to room temperature, the aerosol mass size distribution had a major mode at 0.3 μm diameter and a minor one at 2.5 μm. Aerosol mass below 1.5 μm was well correlated with SO4 =, K+ and PAN. There was a steady increase in the oxidized fraction of total airborne sulphur and nitrogen oxide throughout April as the sun rose above the horizon and remained above. The mean oxidation rate of SO2 between Eurasia and Alert was estimated as 0.25 – 0.5% h−1. The molar ratio of total nitrogen oxide to total sulphur oxide in the arctic atmosphere (0.67±0.17) was comparable to that in European emissions. A remarkably strong inverse correlation of filterable Br and O3 led to the conclusion that O3 destruction and filterable Br production below the Arctic surface radiation inversion is associated with tropospheric photochemical reactions involving naturally occurring gaseous bromine compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.