Abstract

Defining the impact of anthropogenic stressors on Antarctic wildlife is an active aim for investigators. Telomeres represent a promising molecular tool to investigate the fitness of wild populations, as their length may predict longevity and survival. We examined the relationship between telomere length and human exposure in Adélie penguin chicks (Pygoscelis adeliae) from East Antarctica. Telomere length was compared between chicks from areas with sustained human activity and on neighboring protected islands with little or no human presence. Adélie penguin chicks from sites exposed to human activity had significantly shorter telomeres than chicks from unexposed sites in nearby protected areas, with exposed chicks having on average 3.5% shorter telomeres than unexposed chicks. While sampling limitations preclude our ability to draw more sweeping conclusions at this time, our analysis nonetheless provides important insights into measures of colony vulnerability. More data are needed both to understand the proximate causes (e.g., stress, feeding events) leading to shorter telomeres in chicks from human exposed areas, as well as the fitness consequences of reduced telomere length. We suggest to further test the use of telomere length analysis as an eco-indicator of stress in wildlife among anthropized sites throughout Antarctica.

Highlights

  • Despite being one of the most remote environments on Earth, Antarctica is subject to increasing levels of human activity (Hughes 2018)

  • We examined for the first time the impact of anthropogenic activities on telomere length in an Antarctic species

  • Significantly shorter telomeres were observed in Adélie penguin chicks from exposed sites in the vicinity of the active research station Dumont d’Urville compared to telomeres from chicks from unexposed sites in nearby protected areas

Read more

Summary

Introduction

Despite being one of the most remote environments on Earth, Antarctica is subject to increasing levels of human activity (Hughes 2018). Activities such as pedestrian approach and vehicle operations may detrimentally impact wildlife by causing population declines, redistribution of breeding sites, or changes in individual behavior (SCAR 2008). For Adélie and Gentoo penguins at other sites, exposure to human activities was associated with either no difference or even increases in population size (Micol and Jouventin 2001) and breeding success (Cobley and Shears 1999; Holmes et al 2006; Carlini et al 2007; Lynch et al 2010).

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call