Abstract

Initiation of inhalation anthrax is believed to involve phagocytosis of Bacillus anthracis spores by alveolar macrophages, followed by spore germination within the phagolysosome. In order to establish a systemic infection, it is predicted that bacilli then escape from the macrophage and replicate extracellularly. Mechanisms utilized by B. anthracis to escape from the macrophage are not well characterized, but a role for anthrax toxin has been proposed. Here we report the isolation of an anthrax toxin-resistant cell line (R3D) following chemical mutagenesis of toxin-sensitive RAW 264.7 murine macrophage cells. Both R3D and RAW 264.7 cells phagocytize spores of a B. anthracis Sterne strain. However, RAW 264.7 cells are killed following spore challenge, whereas R3D cells survive. Resistance to toxin and spore challenge correlates with loss of expression of anthrax toxin receptor 2 (ANTXR2/CMG-2). When R3D cells are complemented with cDNA encoding either murine ANTXR2 or human anthrax toxin receptor 1 (ANTXR1/TEM-8), toxin and spore challenge susceptibility are restored, indicating that over-expression of either ANTXR can confer susceptibility to anthrax spore challenge. Taken together, these results indicate that anthrax toxin expression by the germinated spore enables B. anthracis killing of the macrophage from within.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.