Abstract

Lethal toxin (LT) is a critical virulence factor of Bacillus anthracis, the etiological agent of anthrax, whose pulmonary form is fatal in the absence of treatment. Inflammatory response is a key process of host defense against invading pathogens. We report here that intranasal instillation of a B. anthracis strain bearing inactive LT stimulates cytokine production and polymorphonuclear (PMN) neutrophils recruitment in lungs. These responses are repressed by a prior instillation of an LT preparation. In contrast, instillation of a B. anthracis strain expressing active LT represses lung inflammation. The inhibitory effects of LT on cytokine production are also observed in vitro using mouse and human pulmonary epithelial cells. These effects are associated with an alteration of ERK and p38-MAPK phosphorylation, but not JNK phosphorylation. We demonstrate that although NF-κB is essential for IL-8 expression, LT downregulates this expression without interfering with NF-κB activation in epithelial cells. Histone modifications are known to induce chromatin remodelling, thereby enhancing NF-κB binding on promoters of a subset of genes involved in immune response. We show that LT selectively prevents histone H3 phosphorylation at Ser 10 and recruitment of the p65 subunit of NF-κB at the IL-8 and KC promoters. Our results suggest that B. anthracis represses the immune response, in part by altering chromatin accessibility of IL-8 promoter to NF-κB in epithelial cells. This epigenetic reprogramming, in addition to previously reported effects of LT, may represent an efficient strategy used by B. anthracis for invading the host.

Highlights

  • Pulmonary infection by B. anthracis, the etiologic agent of anthrax disease [1], has been shown to be the most life-threatening form of the disease as compared to gastrointestinal and cutaneous forms of anthrax

  • We examined the effects of various B. anthracis strains on lung inflammation in a mouse model of pulmonary anthrax and on human lung epithelial cells, the first barrier of lung against invading pathogens

  • We showed that a B. anthracis strain expressing lethal toxin inhibits inflammation

Read more

Summary

Introduction

Pulmonary infection by B. anthracis, the etiologic agent of anthrax disease [1], has been shown to be the most life-threatening form of the disease as compared to gastrointestinal and cutaneous forms of anthrax. Investigation of the immune response triggered by B. anthracis may help to better understand the pathophysiology of anthrax and to develop efficient therapeutic approaches for the treatment of this disease. The innate immune response, including the inflammatory reaction that is the first line of host defense against invading pathogens, is characterized by upregulation of various inflammatory genes due to the activation of transcription factors. IL-8 (Interleukine-8, CXCL8) is a human chemokine that induces the recruitment of polymorphonuclear (PMN) neutrophils from the blood to the injured tissue [5]. This allows PMN to eradicate the invading pathogen within the site of infection. IL-8 is barely detectable, but is rapidly induced by nuclear factor kB

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.