Abstract

An anthraquinone (AQ)-based dimer and trimer linked by a triple bond (-C≡C-) were newly synthesized as active materials for the positive electrode of rechargeable lithium batteries. These synthesized oligomers exhibited an initial discharge capacity of about 200 mAh g-1 with an average voltage of 2.2-2.3 V versus Li(C.E.) . These capacity values are similar to that of the AQ-monomer, reflecting the two-electron transfer redox per AQ unit. Regarding their cycling stability, the capacity of the monomer electrode quickly decreased; however, the electrodes of the prepared oligomers showed an improved cycling performance. In particular, the discharge capacities of the trimer remained almost constant for 100 cycles. A theoretical calculation revealed that the intermolecular binding energy can be increased to the level of a weak covalent bonding by oligomerization, which would be beneficial to suppress the dissolution of the organic active materials into the electrolyte solutions. These results show that the cycle-life of organic active materials can be extended without lowering the discharge capacity by the oligomerization of the redox active molecule unit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.