Abstract

Herein, we found that anthraquinone (AQ) acted as a catalyst for the rapid and effective removal of triphenylmethane dye containing tertiary amino group (TDAG). Results showed that AQ had an enhanced catalytic reactivity towards the removal of TDAG compared to hydro-quinone, which was further proved and explained using density functional theory (DFT) calculations. AQs could achieve a TDAG removal efficiency and rate of approximately 100% and 0.3583 min−1, respectively, within 20 min. Quenching experiments and electron paramagnetic resonance (EPR) tests indicated that the superoxide radical (O2•−) generated through the catalytic reduction of an oxygen molecule (O2) by AQ contributed to the effective removal of the TDAG. In addition, it was found that the electrophilic attack of the O2•− radical on the TDAG was the driving force for the dye degradation process. Decreasing the pH led to protonation of the substituted group of AG, which resulted in formation of an electron deficient center in the TDAG molecule (TDAG-EDC+) through delocalization of the π electron. Therefore, the possibility of the electrophilic attack for the dye by the negative O2•- radical was significantly enhanced. This study revealed that the H+ and the O2•− generated by the catalytic reduction of O2 have synergistic effects that led to a significant increase in the dye removal rate and efficiency, which were higher than those obtained through persulfate oxidation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call