Abstract
Upon interaction of the three anthracycline antibiotics daunomycin, adriamycin, and aclacinomycin A with calf thymus DNA the relative changes of both DNA contour length, delta L/Lo, and persistence length, delta a/ao, have been determined as a function of r, the ratio of bound ligand molecules per DNA mononucleotide. From the r dependence of delta a/ao a measure for the stiffening effect and also the angle gamma of ligand-induced DNA bending could be derived. Experimental basis are titration viscometric measurements upon both low and high molecular weight DNA. It was found that the DNA contour length increases linearly with r by approximately 0.34 nm per bound drug molecule. The comparatively very high DNA stiffening effect measured in solution is understandable as a result of helix clamping by at least two anthracycline groups of sufficient long distance. The variation of gamma on DNA interaction with different anthracycline derivatives find their explanation in terms of different values of the mismatch to in-register binding prior to complex formation. From an analogous interpretation of viscosity measurements by Arcamone and coworkers upon high molecular weight DNA with many anthracycline derivatives it can be concluded that DNA interaction by both amino sugar and 9-acetyl group are responsible for the generation of strong anthracycline binding mediated DNA stiffening effects in solution. (A combined analysis of the viscosity measurements by Cohen & Eisenberg and Armstrong et al. upon DNA interaction with proflavine indicates a very small DNA stiffening effect, gamma = 6.7 sigma and a helix elongation by 0.35 nm per bound ligand molecule.)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.