Abstract
Organic fluorophores with unique photophysical properties that converting the triplet excitons to singlet excitons, are desired to improve the efficiencies of organic light-emitting diodes (OLEDs). Here, two new anthracene-based emitters pipdAnCz and pipdAnTPA, with proper donor and acceptor substituents are designed and synthesized. The theoretical calculation and experimental results demonstrate that both pipdAnCz and pipdAnTPA possess hot exciton and triplet-triplet annihilation (TTA) characteristics, which can convert the triplet excitons to singlet excitons from the high-lying triplet energy levels (Tn) and the lowest triplet energy level (T1) respectively. Due to its relative higher photoluminescence quantum yields (PLQYs), the pipdAnTPA based non-doped device achieved a maximum external quantum efficiency (EQEmax) of 6.43% with an exciton utilization efficiency (EUE) of 72%. Further device physics study reveal that the hot exciton process is the dominant mechanism, assisted by TTA process, to convert the triplet excitons, especially for the pipdAnTPA based device.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.